Abstract

In this work, we consider the numerical integration of the nonlinear Dirac equation and the Dirac–Poisson system (NDEs) under rough initial data. We propose an ultra low-regularity integrator (ULI) for solving the NDEs which enables optimal first-order time convergence in H r H^r for solutions in H r H^{r} , i.e., without requiring any additional regularity on the solution. In contrast to classical methods, a ULI overcomes the numerical loss of derivatives and is therefore more efficient and accurate for approximating low regular solutions. Convergence theorems and the extension of a ULI to second order are established. Numerical experiments confirm the theoretical results and underline the favourable error behaviour of the new method at low regularity compared to classical integration schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.