Abstract

<p style='text-indent:20px;'>We consider the low regularity behavior of the fourth order cubic nonlinear Schrödinger equation (4NLS) <p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} \begin{cases} i\partial_tu+\partial_x^4u = \pm \vert u \vert^2u, \quad(t,x)\in \mathbb{R}\times \mathbb{R}\\ u(x,0) = u_0(x)\in H^s\left(\mathbb{R}\right). \end{cases} \end{align*} $\end{document} </tex-math></disp-formula> <p style='text-indent:20px;'>In [<xref ref-type="bibr" rid="b29">29</xref>], the author showed that this equation is globally well-posed in <inline-formula><tex-math id="M1">\begin{document}$ H^s(\mathbb{R}), s\\\geq -\frac{1}{2} $\end{document}</tex-math></inline-formula> and mildly ill-posed in the sense that the solution map fails to be locally uniformly continuous for <inline-formula><tex-math id="M2">\begin{document}$ -\frac{15}{14}&lt;s&lt;-\frac{1}{2} $\end{document}</tex-math></inline-formula>. Therefore, <inline-formula><tex-math id="M3">\begin{document}$ s = -\frac{1}{2} $\end{document}</tex-math></inline-formula> is the lowest regularity that can be handled by the contraction argument. In spite of this mild ill-posedness result, we obtain an a priori bound below <inline-formula><tex-math id="M4">\begin{document}$ s&lt;-1/2 $\end{document}</tex-math></inline-formula>. This an a priori estimate guarantees the existence of a weak solution for <inline-formula><tex-math id="M5">\begin{document}$ -3/4&lt;s&lt;-1/2 $\end{document}</tex-math></inline-formula>. Our method is inspired by Koch-Tataru [<xref ref-type="bibr" rid="b17">17</xref>]. We use the <inline-formula><tex-math id="M6">\begin{document}$ U^p $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M7">\begin{document}$ V^p $\end{document}</tex-math></inline-formula> based spaces adapted to frequency dependent time intervals on which the nonlinear evolution can still be described by linear dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call