Abstract
The microbial activities in sewer biofilms are recognized as a major reason for sewer pipe corrosion, malodor, and greenhouse gas emissions. However, conventional methods to control sewer biofilm activities were based on the inhibitory or biocidal effect of chemicals and often required long exposure time or high dosing rates due to the protection of sewer biofilm structure. Therefore, this study attempt to use ferrate (Fe(VI)), a green and high-valent iron, at low dosing rates to damage the sewer biofilm structure so as to enhance sewer biofilm control efficiency. The results showed the biofilm structure started to crush when the Fe(VI) dosage was 15 mg Fe(VI)/L and the damage enhanced with the increasing dosage. The determination of extracellular polymeric substances (EPS) showed that Fe(VI) treatment at 15-45 mgFe/L mainly decreased the content of humic substances (HS) in biofilm EPS. This is because the functional groups, such as C-O, -OH, and C=O, which held the large molecular structure of HS, were the primary target of Fe(VI) treatment as suggested by 2D-Fourier Transform Infrared spectra. As a result, the coiled chain of EPS maintained by HS was turned to extended and dispersed and consequently led to a loosed biofilm structure. The XDLVO analysis suggested that both the microbial interaction energy barrier and secondary energy minimum were increased after Fe(VI) treatment, suggesting that the treated biofilm was less likely to aggregate and easier to be removed by the shear stress caused by high wastewater flow. Moreover, combined Fe(VI) and free nitrous acid (FNA) dosing experiments showed for achieving 90% inactivation, the FNA dosing rate could be reduced by 90% with the exposure time decreasing by 75% at a low Fe(VI) dosing rate and the total cost was substantially decreased. These results suggested that applying low-rate Fe(VI) dosing for sewer biofilm structure destruction is expected to be an economical way to facilitate sewer biofilm control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.