Abstract

We present a versatile framework for tractable computation of approximate variances in large-scale Gaussian Markov random field estimation problems. In addition to its efficiency and simplicity, it also provides accuracy guarantees. Our approach relies on the construction of a certain low-rank aliasing matrix with respect to the Markov graph of the model. We first construct this matrix for single-scale models with short-range correlations and then introduce spliced wavelets and propose a construction for the long-range correlation case, and also for multiscale models. We describe the accuracy guarantees that the approach provides and apply the method to a large interpolation problem from oceanography with sparse, irregular, and noisy measurements, and to a gravity inversion problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.