Abstract

In this work, we consider two types of large-scale quadratic matrix equations: continuous-time algebraic Riccati equations, which play a central role in optimal and robust control, and unilateral quadratic matrix equations, which arise from stochastic processes on 2D lattices and vibrating systems. We propose a simple and fast way to update the solution to such matrix equations under low-rank modifications of the coefficients. Based on this procedure, we develop a divide-and-conquer method for quadratic matrix equations with coefficients that feature a specific type of hierarchical low-rank structure, which includes banded matrices. This generalizes earlier work on linear matrix equations. Numerical experiments indicate the advantages of our newly proposed method versus iterative schemes combined with hierarchical low-rank arithmetic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.