Abstract

Differential privacy is a promising privacy-preserving paradigm for statistical query processing over sensitive data. It works by injecting random noise into each query result, such that it is provably hard for the adversary to infer the presence or absence of any individual record from the published noisy results. The main objective in differentially private query processing is to maximize the accuracy of the query results, while satisfying the privacy guarantees. Previous work, notably the matrix mechanism [16], has suggested that processing a batch of correlated queries as a whole can potentially achieve considerable accuracy gains, compared to answering them individually. However, as we point out in this paper, the matrix mechanism is mainly of theoretical interest; in particular, several inherent problems in its design limit its accuracy in practice, which almost never exceeds that of naïve methods. In fact, we are not aware of any existing solution that can effectively optimize a query batch under differential privacy. Motivated by this, we propose the Low-Rank Mechanism (LRM), the first practical differentially private technique for answering batch queries with high accuracy, based on a low rank approximation of the workload matrix. We prove that the accuracy provided by LRM is close to the theoretical lower bound for any mechanism to answer a batch of queries under differential privacy. Extensive experiments using real data demonstrate that LRM consistently outperforms state-of-the-art query processing solutions under differential privacy, by large margins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.