Abstract
This paper studies the channel estimation for wideband multiple-input multiple-output (MIMO) systems equipped with hybrid analog/digital transceivers operating in the millimeter-wave (mmWave) or terahertz (THz) bands. By exploiting the low-rank property of the concatenated channel matrix of the delay taps, we formulate the channel estimation problem as a low-rank matrix sensing (LRMS) problem and solve it using a low-complexity generalized conditional gradient-alternating minimization (GCG-ALTMIN) algorithm. This LRMS-based solution can accommodate different precoder/combiner and training structures. In addition, it does not require knowledge about the array responses at the transceivers, in contrast to most existing solutions allowing low training overhead. Furthermore, a preconditioned conjugate gradient (PCG) algorithm-based implementation and a low-rank matrix completion (LRMC) formulation are proposed to further reduce the computational complexity. In order to enhance the channel estimation performance for fat and tall channel matrices, we introduce a matrix reshaping approach that can preserve the channel rank by exploiting the shift-invariance property of uniform arrays. We also introduce a spectrum denoising (SD) approach for further improving the performance when the array responses are known and the number of paths is small. These approaches can effectively enhance the performance at a given training overhead. Simulation results suggest that the proposed solutions can achieve higher channel estimation accuracy and reduce the computational complexity as compared to several representative channel estimation schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Selected Topics in Signal Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.