Abstract

This paper considers the recovery of a low-rank matrix from an observed version that simultaneously contains both 1) erasures, most entries are not observed, and 2) errors, values at a constant fraction of (unknown) locations are arbitrarily corrupted. We provide a new unified performance guarantee on when minimizing nuclear norm plus l1 norm succeeds in exact recovery. Our result allows for the simultaneous presence of random and deterministic components in both the error and erasure patterns. By specializing this one single result in different ways, we recover (up to poly-log factors) as corollaries all the existing results in exact matrix completion, and exact sparse and low-rank matrix decomposition. Our unified result also provides the first guarantees for 1) recovery when we observe a vanishing fraction of entries of a corrupted matrix, and 2) deterministic matrix completion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.