Abstract

Kernel methods, e.g., composite kernels (CKs) and spatial-spectral kernels (SSKs), have been demonstrated to be an effective way to exploit the spatial-spectral information nonlinearly for improving the classification performance of hyperspectral image (HSI). However, these methods are always conducted with square-shaped window or superpixel techniques. Both techniques are likely to misclassify the pixels that lie at the boundaries of class, and thus a small target is always smoothed away. To alleviate these problems, in this paper, we propose a novel patch-based low rank component induced spatial-spectral kernel method, termed LRCISSK, for HSI classification. First, the latent low-rank features of spectra in each cubic patch of HSI are reconstructed by a low rank matrix recovery (LRMR) technique, and then, to further explore more accurate spatial information, they are used to identify a homogeneous neighborhood for the target pixel (i.e., the centroid pixel) adaptively. Finally, the adaptively identified homogenous neighborhood which consists of the latent low-rank spectra is embedded into the spatial-spectral kernel framework. It can easily map the spectra into the nonlinearly complex manifolds and enable a classifier (e.g., support vector machine, SVM) to distinguish them effectively. Experimental results on three real HSI datasets validate that the proposed LRCISSK method can effectively explore the spatial-spectral information and deliver superior performance with at least 1.30% higher OA and 1.03% higher AA on average when compared to other state-of-the-art classifiers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call