Abstract

Surface roughness affects various cell activities, including osteoblast motility, which may have an effect on bone regeneration. Defective cell signaling, which is associated with the slow motility of osteoblasts on a substrate with rough topology at nanometer dimensions (Ra = 123.8 ± 29.1 nm), was studied. Osteoblasts grown on the rough surface at nanometer dimensions showed the high activities of small GTPase RhoA and Rho-associated kinase (ROCK) on the rough surface at nanometer dimensions and downregulated Rac1 activity compared to the smooth surface. The inhibition of ROCK in the cells with Y-27632, a specific ROCK inhibitor, reversed the low-cell motility. In addition, the transfection of constitutively active Rac1 reversed the low-cell motility. However, Rac1 inhibition abolished the reversal of low-cell motility induced by ROCK inhibition. These results indicate that upregulated RhoA/ROCK activity suppresses Rac1 activity to decrease the motility of osteoblasts on a rough surface at nanometer dimensions, and the low motility of osteoblasts on a rough surface at nanometer dimensions can be reversed by ROCK inhibition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.