Abstract

Waste oils are a promising alternative feedstock for biodiesel production due to the decrease of the industrial production costs. However, feedstock with high free fatty acids (FFA) content presents several drawbacks when alkaline-catalyzed transesterification reaction is employed in biodiesel production process. Nowadays, to develop suitable processes capable of treating oils with high free fatty acids content, a two-step process for biodiesel production is being investigated. The major problem that it presents is that two catalysts are needed to carry out the whole process: an acidic catalyst for free fatty acids esterification (first step) and a basic catalyst for pretreated product transesterification (second step). The use of a bifunctional catalyst, which allows both reactions to take place simultaneously, could minimize the production costs and time. In the present study, the behavior of pumice, a natural volcanic material used as a heterogeneous catalyst, was tested using oils with several FFA and water contents as feedstock in the transesterification reaction to produce biodiesel. Pumice as a bifunctional solid catalyst, which can catalyze simultaneously the esterification of FFA and the transesterification of fatty acid glycerides into biodiesel, was shown to be an efficient catalyst for the conversion of low-grade, nonedible oil feedstock into biodiesel product. Using this solid catalyst for the transesterification reaction, high FAME yields were achieved when feedstock oils presented a FFA content until approximately 2% wt/wt and a water content until 2% wt/wt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.