Abstract

BackgroundThe design and implementation of high-performance motor imagery-based brain computer interface (MI-BCI) requires high-quality training samples. However, fluctuation in subjects’ physiological and mental states as well as artifacts can produce the low-quality motor imagery electroencephalogram (EEG) signal, which will damage the performance of MI-BCI system. New methodIn order to select high-quality MI-EEG training data, this paper proposes a low-quality training data detection method combining independent component analysis (ICA) and weak classifier cluster. we also design and implement a new online BCI system based on motor imagery to verify the online processing performance of the proposed method. ResultIn order to verify the effectiveness of the proposed method, we conducted offline experiments on the public dataset called BCI Competition IV Data Set 2b. Furthermore, in order to verify the processing performance of the online system, we designed 60 groups of online experiments on 12 subjects. The online experimental results show that the twelve subjects can complete the system task efficiently (the best experiment is 135.6 s with 9 trials of subject S1). ConclusionThis paper demonstrated that the proposed low-quality training data detection method can effectively screen out low-quality training samples, so as to improve the performance of the MI-BCI system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call