Abstract

High energy lepton scattering has been the primary tool for mapping out the quark distributions of nucleons and nuclei. Data on the proton and deuteron have shown that there is a fundamental connection between the low and high energy regimes, referred to as quark-hadron duality. We present the results of similar studies to more carefully examine scaling, duality, and in particular the EMC effect in nuclei. We extract nuclear modifications to the structure function in the resonance region, and for the first time demonstrate that nuclear effects in the resonance region are identical to those measured in deep inelastic scattering. With the improved precision of the data at large $x$, we for the first time observe that the large-x crossover point appears to occur at lower $x$ values in carbon than in iron or gold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call