Abstract
The measurement of direct photons from Au+Au collisions at sNN=39 and 62.4 GeV in the transverse-momentum range 0.4<pT<3Gev/c is presented by the PHENIX collaboration at the BNLRelativistic Heavy Ion Collider. A significant direct-photon yield is observed in both collision systems. A universal scaling is observed when the direct-photon pT spectra for different center-of-mass energies and for different centrality selections at sNN=62.4 GeV is scaled with (dNch/dη)α for α=1.21±0.04. This scaling also holds true for direct-photon spectra from Au+Au collisions at sNN=200 GeV measured earlier by PHENIX, as well as the spectra from Pb+Pb at sNN=2760 GeV published by ALICE. The scaling power α seems to be independent of pT, center of mass energy, and collision centrality. The spectra from different collision energies have a similar shape up to pT of 2 Gev/c. The spectra have a local inverse slope Teff increasing with pT of 0.174±0.018Gev/c in the range 0.4<pT<1.3Gev/c and increasing to 0.289±0.024Gev/c for 0.9<pT<2.1Gev/c. The observed similarity of low-pT direct-photon production from sNN=39 to 2760 GeV suggests a common source of direct photons for the different collision energies and event centrality selections, and suggests a comparable space-time evolution of direct-photon emission.9 MoreReceived 24 March 2022Accepted 21 October 2022DOI:https://doi.org/10.1103/PhysRevC.107.024914©2023 American Physical SocietyPhysics Subject Headings (PhySH)Research AreasPhoton, lepton & quark productionRelativistic heavy-ion collisionsTechniquesHadron collidersNuclear Physics
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.