Abstract

Nutritional insults during developmental plasticity have been linked with metabolic diseases such as diabetes in adulthood. We aimed to investigate whether a low-protein (LP) diet at the beginning of adulthood is able to program metabolic disruptions in rats. While control rats ate a normal-protein (23%; NP group) diet, treated rats were fed a LP (4%; LP group) diet from 60 to 90 days of age, after which an NP diet was supplied until they were 150 days old. Plasma levels of glucose and insulin, autonomous nervous system (ANS), and pancreatic islet function were then evaluated. Compared with the NP group, LP rats exhibited unchanged body weight and reduced food intake throughout the period of protein restriction; however, after the switch to the NP diet, hyperphagia of 10% (P<0.05), and catch-up growth of 113% (P<0.0001) were found. The LP rats showed hyperglycemia, insulin resistance, and higher fat accretion than the NP rats. While the sympathetic tonus from LP rats reduced by 28%, the vagus tonus increased by 21% (P<0.05). Compared with the islets from NP rats, the glucose insulinotropic effect as well as cholinergic and adrenergic actions was unaltered in the islets from LP rats. Protein restriction at the beginning of adulthood induced unbalanced ANS activity and fat tissue accretion later in life, even without functional disturbances in the pancreatic islets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.