Abstract

This study investigated the effect of a low protein (LP) diet on growth performance, nitrogen emission, carcass traits, meat quality, and gut microbiota in finishing pigs. Fifty-four barrows (Duroc × Landrace × Yorkshire) were randomly assigned to three treatments with six replicates (pens) of three pigs each. The pigs were fed with either high protein (HP, 16% CP), medium protein (MP, 12% CP), and LP diets (10% CP), respectively. The LP diets did not influence the growth performance, but significantly decreased the plasma urea nitrogen contents and fecal nitrogen emission (P < 0.05). The LP diet significantly decreased the plasma contents of malondialdehyde (MDA) and increased the plasma glutathione (GSH) contents (P < 0.05). The LP diets significantly increased the backfat thickness at the first and last ribs, L* (lightness) value of meat color, and muscle fiber density in the longissimus dorsi (P < 0.05). The messenger RNA (mRNA) expression of fatty acid synthetase (FAS), peroxisome proliferator-activated receptor-gamma (PPARγ), leptin, and acetyl-CoA carboxylase (ACC) was significantly downregulated, while that of carnitine palmitoyltransferase 1 (CPT1) and myosin heavy chain (MYHC) IIx in the longissimus Dorsi muscle was significantly upregulated by LP diets (P < 0.05). The 16S sequencing analysis showed that the abundance of unidentified Bacteria at the phylum level, and Halanaerobium and Butyricicoccusat at the genus level in the colonic digesta were significantly decreased by LP diet (P < 0.05). The LP diet significantly decreased the observed species of α-diversity in both ileal and colonic microbiota (P < 0.05). Spearman correlation analysis identified a significant positive correlation between the abundance of the ileal genera Streptococcus and L* value at 24 and 48 h, and a significant negative correlation between unidentified_Ruminococcasceae in both ileum and colon with L* value at 24 h (P < 0.05). Collectively, the LP diet supplemented with lysine, methionine, threonine, and tryptophan could reduce the fecal nitrogen emission without affecting growth performance and improve meat quality by regulating the antioxidant capacity and gene expression involved in fat metabolism as well as modulating the gut microbiota composition in finishing pigs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.