Abstract
Feeding a low-protein (LP) diet to pregnant and lactating rats impairs pancreatic islet mass and insulin release in the offspring, leading to glucose intolerance as adults. We hypothesized that an LP diet changes the number of pancreatic endocrine precursor cells or cells supporting endocrine cell neogenesis. Pregnant rats were given LP (8% protein) or a control (20% protein) diet from conception until postnatal d 21. Cells containing nestin, CD34, or c-Kit were quantified in pancreata of the offspring. Stellate cells immunoreactive for nestin were seen to be adjacent to ductal epithelium and were resident within the islets. These were proliferative and immunonegative for cytokeratin 20, fibronectin, tyrosine hydroxylase, pancreatic duodenal homeobox 1, Nk homeodomain transcription factor 6.1, or insulin, but expressed vimentin. Approximately 20% of islet nestin-positive cells also expressed the endothelial cell marker platelet endothelial cell adhesion molecule-1. Both ducts and islets also contained CD34- and c-Kit-positive cells with similar morphology to those expressing nestin. Offspring from rats fed the LP diet had significantly less nestin/CD34-positive cells and reduced expression of nestin mRNA. Within islets, there was an associated decrease in cell proliferation and in cells immunopositive for pancreatic duodenal homeobox 1. Nestin-positive cell number within islets correlated positively with the percent area of beta-cells. Supplementation of pregnant and lactating rats with taurine reversed the deficits in mean islet area and nestin-positive cells caused by the LP diet within the islets of the offspring. Nutritional programming of postnatal beta-cell mass may involve an altered abundance of cells expressing nestin and/or CD34, which may limit endocrine cell development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.