Abstract
Dielectric Elastomer Actuators (DEAs) are known for their outstanding properties such as low weight, high energy density and self-sensing capability. Compared to conventional magnetic actuators, they are manufactured from generally inexpensive and widely available polymer materials, making the technology particularly attractive for developing actuator systems that are potentially low-cost and serve a wide range of applications. This advantage can be further enhanced by developing scalable and standardized system designs that use identical parts in order to reduce product variation and enable high volumes in a mass production process. Following this approach, this paper introduces a low-profile and compact linear actuator design, which provides a configurable force and stroke transmission in order to serve different load-profiles without changing shape and dimension of the DEA itself. The design is based on rectangular-shaped, in-plane operating DEAs coupled to a unibody linkage mechanism, which is likewise flat and based on compliant joints and rigid links. A negative rate stiffness mechanism enables to increase the performance output of the actuator system in terms of cyclic converted energy in quasi-static operation. By configuring the lever ratios of the input and output sides accordingly, it can either behave stroke-magnifying or force-magnifying. Thus, as an example, a system with negative and one with positive transmission ratio are realized and characterized with respect to their force and their stroke behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.