Abstract

Breath-hold divers should adjust their dive behaviors to maximize the benefits and minimize the costs of foraging on prey patches of different densities at different depths. However, few studies have quantified how animals respond to changes in prey availability (depth and density), and how this affects their foraging efficiency. We tested the effects of changes in prey availability on the foraging behavior and efficiency of Steller sea lions (Eumetopias jubatus) by measuring diving metabolic rate, dive durations, and food intake of 4 trained sea lions diving in the open ocean on controlled prey patches of different densities at different depths. Sea lions completed bouts of 5 consecutive dives on high- or low-density prey patches at two depths (10m and 40m). We found that the rate of energy expenditure did not change under any of the imposed foraging conditions (mean±SD: 0.22±0.02kJmin−1kg−1), but that the proportion of time spent consuming prey increased with prey patch density due to changes in diving patterns. At both depths, sea lions spent a greater proportion of the dive bout foraging on prey patches with high prey density, which led to high rates of energy gain (4.3±0.96kJmin−1kg−1) and high foraging efficiency (cost:benefit was 1:20). In contrast, the sea lions spent a smaller proportion of their dive bout actively feeding on prey patches with low prey density, and consequently had a lower energetic gain (0.91±0.29kJmin−1kg−1) and foraging efficiency (1:4). The 5-fold differences in foraging efficiency between the two types of prey patches were greater than the 3-fold differences that we expected based on differences in food availability. Our results suggest that sea lions faced with reduced prey availability forage less efficiently and therefore would have greater difficulty obtaining their daily energy requirements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call