Abstract

Salmonella contamination of ground beef has been viewed as originating from the surface of carcasses. Recent studies have identified lymph nodes as a potential source of Salmonella contamination because these tissues play an active role in containment of pathogens in the live animal and because some lymph nodes are unavoidably present in manufacturing beef trimmings or primal cuts that may be incorporated into ground beef. A survey was conducted of the microbiological status of lymph nodes from Australian cattle at the time of slaughter to determine the prevalence of microbiological contamination. Sets of lymph nodes (n = 197), consisting of the superficial cervical (prescapular), prepectoral, axillary, presternal, popliteal, ischiatic, subiliac (precrural), coxalis, and iliofemoralis (deep inguinal), were collected from five geographically separated Australian abattoirs over a period of 14 months. Samples were tested for the presence of Salmonella spp. and Shiga toxin-producing Escherichia coli by BAX PCR assay. Aerobic plate count, E. coli, and coliforms were enumerated with a lower limit of detection of 80 CFU per node. The observed prevalence of Salmonella within peripheral lymph nodes was 0.48% (7 of 1,464). Two of the seven lymph nodes in which Salmonella organisms were detected came from the same animal. Grass-fed, grain-fed, and cull dairy cattle were all found to have detectable Salmonella in lymph nodes. All Salmonella detections occurred during cooler months of the year. No Shiga toxin-producing E. coli were detected. Aerobic microorganisms were detected above the limit of quantification in 3.2% of nodes (median count 2.24 log per node), and E. coli was detected in 0.8% of nodes (median count 3.05 log per node). The low prevalence of Salmonella and low concentration of aerobic microorganisms in Salmonella-positive lymph nodes of Australian cattle at the time of slaughter suggest that the likelihood of lymph nodes contributing significantly to the presence of Salmonella in ground beef is low.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call