Abstract

A method of positioning a location on a specific object using a wireless sensor has been developed for a long time. However, due to the error of wavelengths and various interference factors occurring in three-dimensional space, accurate positioning is difficult, and predicting future locations is even more difficult. It uses IoT-based node pattern recognition technology to overcome positioning errors or inaccurate predictions in wireless sensor networks. It developed a method to improve the current positioning accuracy in a sensor network environment and a method to learn a pattern of position data directly from a wavelength receiver. The developed method consists of two steps: The first step is a method of changing location data in 3D space to location data in 2D space in order to reduce the possibility of positioning errors in 3D space. The second step is to reduce the range of the moving direction angle in which the data changed in two dimensions can be changed in the future and to predict future positions through pattern recognition of the position data. It is to calculate the expected position in the future. In conclusion, three-dimensional positioning accuracy was improved through this method, and future positioning accuracy was also improved. The core technology was able to reduce inevitable errors by changing the spatial dimension from 3D to 2D and to improve the accuracy of future location prediction by reducing the range of the movable direction angle of the location data changed to 2D. It was also possible to obtain the result that the prediction accuracy increases in proportion to the amount of data accumulated in the wavelength receiver and the learning time. In the era of the Fourth Industrial Revolution, this method is expected to be utilized in various places, such as smart cities, autonomous vehicles, and disaster prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.