Abstract

We present low area and low power semi-systolic array architectures for polynomial basis multiplication over GF(2m) using Progressive Multiplier Reduction Technique (PMR). These architectures are explored using linear and nonlinear techniques applied to the polynomial multiplication algorithm. The nonlinear techniques allow the designer, to control the processor workload and reduce the inter-processor communications. The semi-systolic architectures obtained have simple structure with local communication. ASIC implementations of our designs and comparable published designs show that the proposed scalable semi-systolic structures have less area complexity (56.8---94.6 %) and power consumption (55.2---84.2 %) except for a scalable design published by the same authors. However, one of the proposed scalable designs outperforms this design in terms of throughput by 73.8 %. This makes the proposed designs suited to embedded applications that require low power consumption and moderate speed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call