Abstract

A 1 × 4 thermo-optic switch based on polymer∕SiO2 waveguide has been investigated. The input light can be routed to any of the four output ports by different metal heater control. An asymmetric Mach–Zehnder interferometer is adopted to avoid pre-biasing. Silica bottom-cladding speeds up the process of material refractive index restoration and corresponding switching operation. Finite element method is used to optimize the optical design. The air trench formed on both sides of the active branch reduces the electrical power consumption by 20%. The experimental result demonstrates an extinction ratio of 20 dB at an electrical power consumption of 6 mW. The rise time and fall time are 160 and 80μs, respectively. This work has promising potentials for optical network connections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.