Abstract
The purpose of this study was to determine whether low-power-consuming symmetrical-waveform electromagnetic stimuli could increase the stiffness of fracture sites in a rabbit fibular-osteotomy model. Both active and placebo devices were used in a blinded study protocol. Dose-response studies of pulse amplitude and pulse width were performed by continuous application (twenty-four hours a day) of repetitive (fifteen-hertz), bursted (five-millisecond-long) symmetrical, rectangular electromagnetic stimulus waveforms. The power consumed by these stimuli is approximately one-fifth that consumed by the pulsing electromagnetic field devices that are in current clinical use. Significant increase of callus bending stiffness was produced by pulse widths of five to seven microseconds and pulse amplitudes of fifty to 100 millivolts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.