Abstract

In this paper, low-power design techniques of high-speed A/D converters are reviewed and discussed. Pipeline and parallel-pipeline architectures are treated as these are dominant architectures when required high sampling rate and high resolution with reasonable power dissipation. A systematic approach to the power optimization of pipeline and parallel pipeline ADC's is introduced based on models of noise analysis and response time of a building block in the multiple-stage pipeline ADC. Finally, the theoretical minimum of required power as functions of the sampling rate, resolution and SNR is discussed. The analysis shows that, with the developments of new circuits and systems to approach to the minimum, the power can be further reduced by a factor of more than 1/10 without changing the basic architectures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.