Abstract

An NO2 micro gas sensor was fabricated based on a micro-heater using tin oxide nano-powders for effective gas detection and monitoring system with low power consumption and high sensitivity. The processes of the fabrication were acceptable to the conventional CMOS processes for mass-production. Semiconducting SnO2 nano-powders were synthesized via the co-precipitation method; and to increase the sensitivity of the NO2 gas rare metal dopants were added. In the structure of the micro-heater, the resistances of two semi-circular Pt heaters were connected to the spreader for thermal uniformity. The resistance of each heater becomes an electrically equal Wheatstone-bridge, which was divided in half by the heat spreading structure. Based on the aforementioned design, a low-power-consumption micro-heater was fabricated using the CMOS-compatible MEMS processes. A bridge-type micro-heater based on the Si substrate was fabricated via surface micro-machining. The NO2 sensing properties of a screen-printed tin oxide thick film device were measured The micro gas sensors showed substantial sensitivity down to 0.5 ppm NO2 at a low power consumption (34.2 mW).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.