Abstract

In this paper, we describe a new magnetoresistive random access memory (MRAM) sensing scheme with a body-biased preamplifier for low-power and high-sensitivity operation. The proposed new MRAM sense amplifier consists of a current sense preamplifier with a body biasing differential pair of a common-gate amplifier and a voltage sense amplifier. The preamplifier controls bitline voltage appropriately and amplifies the difference in bitline current as current-mode sense amplifier. The new sense amplifier enhances sensitivity, and the body-biased preamplifier enables low-voltage operation. To evaluate the proposed circuit, the modeling of magnetic tunnel junction (MTJ) resistance characteristics was performed with a VHDL-AMS description, and the proposed circuit was simulated with a mixed signal circuit simulator. From the simulation result, it is confirmed that the proposed sensing scheme results in a 1.57 times faster access time than a conventional scheme, and that the power of the sense amplifier is lower than that of the conventional amplifier at the same speed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call