Abstract

This paper describes a 32-tap finite impulse response (FIR) filter with two 16-tap macros suitable for multiple taps. The derived condition for a coded coefficient and data block shows 35% savings in power consumption and 44% improvement in occupied area compared to a typical radix-4 modified Booth algorithm. According to the condition and separated shifting-accessing clock scheme, we have implemented a 32-tap FIR filter in 0.6-/spl mu/m CMOS technology with three levels of metal. The chip that occupies 2.3/spl times/2.5 mm/sup 2/ of silicon area has an operating frequency of 20 MHz and consumes 75 mW at V/sub dd/=3.3 V.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.