Abstract

A micro-scale pressure sensor based on suspended AlGaN/GaN heterostructure is reported with non-linear sensitivity. By sealing the cavity, vacuum sensing at various temperatures was demonstrated. To validate the proposed concept of the AlGaN/GaN vacuum sensor, a 700 μm diameter circular membrane was electrically characterized under applied static and dynamic pressures at various temperatures ranging from 25 °C to 100 °C. The current change of the AlGaN/GaN heterostructure increased as the vacuum and temperature increases due to the increase of 2DEG density by tensile strain. The dynamic current change from 96 kPa down to 10 Pa of AlGaN/GaN heterostructure pressure sensor was 18.75 % at 100 °C. The maximum sensitivity reached 22.8 %/kPa with a power consumption of 1.8 μW. These results suggest that suspended AlGaN/GaN heterostructures are promising for high vacuum and high-temperature sensing applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.