Abstract

THz oscillators generated via frequency-multiplication of microwaves are facing difficulty in achieving low phase noise. Photonics-based techniques, in which optical two tones are translated to a THz wave through opto-electronic conversion, are promising if the relative phase noise between the two tones is well suppressed. Here, a THz (≈560 GHz) wave with a low phase noise is provided by a frequency-stabilized, dissipative Kerr microresonator soliton comb. The repetition frequency of the comb is stabilized to a long fiber in a two-wavelength delayed self-heterodyne interferometer, significantly reducing the phase noise of the THz wave. A measurement technique to characterize the phase noise of the THz wave beyond the limit of a frequency-multiplied microwave is also demonstrated, showing the superior phase noise of the THz wave to any other photonic THz oscillators (>300 GHz).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.