Abstract

BackgroundRare data are available on the molecular responses of higher plants to low pH. Seedlings of ‘Sour pummelo’ (Citrus grandis) and ‘Xuegan’ (Citrus sinensis) were treated daily with nutrient solution at a pH of 2.5, 3, or 6 (control) for nine months. Thereafter, we first used 2-dimensional electrophoresis (2-DE) to investigate low pH-responsive proteins in Citrus leaves. Meanwhile, we examined low pH-effects on leaf gas exchange, carbohydrates, ascorbate, dehydroascorbate and malondialdehyde. The objectives were to understand the adaptive mechanisms of Citrus to low pH and to identify the possible candidate proteins for low pH-tolerance.ResultsOur results demonstrated that Citrus were tolerant to low pH, with a slightly higher low pH-tolerance in the C. sinensis than in the C. grandis. Using 2-DE, we identified more pH 2.5-responsive proteins than pH 3-responsive proteins in leaves. This paper discussed mainly on the pH 2.5-responsive proteins. pH 2.5 decreased the abundances of proteins involved in ribulose bisphosphate carboxylase/oxygenase activation, Calvin cycle, carbon fixation, chlorophyll biosynthesis and electron transport, hence lowering chlorophyll level, electron transport rate and photosynthesis. The higher oxidative damage in the pH 2.5-treated C. grandis leaves might be due to a combination of factors including higher production of reactive oxygen species, more proteins decreased in abundance involved in antioxidation and detoxification, and lower ascorbate level. Protein and amino acid metabolisms were less affected in the C. sinensis leaves than those in the C. grandis leaves when exposed to pH 2.5. The abundances of proteins related to jasmonic acid biosynthesis and signal transduction were increased and decreased in the pH 2.5-treated C. sinensis and C. grandis leaves, respectively.ConclusionsThis is the first report on low pH-responsive proteins in higher plants. Thus, our results provide some novel information on low pH-toxicity and -tolerance in higher plants.

Highlights

  • Rare data are available on the molecular responses of higher plants to low pH

  • We identified 16 protein spots increased in abundance and protein spots decreased in abundance, and two protein spots increased in abundance and eight protein spots decreased in abundance from the pH 2.5- and pH 3-treated C. sinensis leaves, respectively, and nine protein spots increased in abundance and protein spots decreased in abundance, and four protein spots increased in abundance and 23 protein spots decreased in abundance from the pH 2.5- and pH 3-treated C. grandis leaves, respectively (Tables 1, 2 and 3 and Fig. 6a-d)

  • C. grandis 2 C. sinensis a Citrus sinensis and C. grandis were tolerant to low pH Our results clearly showed that only pH 2.5 led to significant decreases in leaf CO2 assimilation and stomatal conductance (Fig. 1a-b), ASC + DHA and ASC concentrations, and ASC/(ASC + DHA) ratio (Fig. 3a, b and d), and significant increases in leaf levels of nonstructural carbohydrates (Fig. 2)

Read more

Summary

Introduction

Rare data are available on the molecular responses of higher plants to low pH. Seedlings of ‘Sour pummelo’ (Citrus grandis) and ‘Xuegan’ (Citrus sinensis) were treated daily with nutrient solution at a pH of 2.5, 3, or 6 (control) for nine months. In addition to inhibiting directly or indirectly plant growth and development, low pH (high H+) has negative influences on cellular structure and functions, and physiological and biochemical processes, including the uptake of water and nutrients [8, 14], leaf gas exchange [8, 10, 15], chlorophyll (Chl) biosynthesis, Chl a fluorescence [8, 11, 15, 16], reactive oxygen species (ROS) production and detoxification [4, 16,17,18], membrane integrity [19], and cell wall structure and functions [20, 21].

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call