Abstract

Coagulation method was first used to prepare nanocomposites of multi-wall carbon nanotubes (MWNT) and poly(ethylene terephthalate) (PET). The morphology of nanocomposites is characterized using transmission electronic microscopy and scanning electronic microscopy. A coating on MWNT by PET chains is observed by comparison of micrographs of purified MWNT and MWNT encapsulated by PET chains in the nanocomposites, and this coating is considered as evidence of interfacial interaction between MWNT and PET chains. Both electrical conductivity and rheological properties have been well characterized. With increasing MWNT loading, the nanocomposites undergo transition from electrically insulative to conductive at room temperature, while the melts show transition from liquid-like to solid-like viscoelasticity. The percolation threshold of 0.6 wt% (based on viscosity) for rheological property and 0.9 wt% for electrical conductivity has been found. The low percolation threshold results from homogeneous dispersion of MWNT in PET matrix and high aspect ratio of MWNT. The less rheological percolation threshold than electrical percolation threshold is mainly attributed to the fact that a denser MWNT network is required for electrical conductivity, while a less dense MWNT network sufficiently impedes PET chain mobility related to the rheological percolation threshold.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call