Abstract

During fracture healing and microfracture treatment of cartilage defects mesenchymal stem cells (MSCs) infiltrate the wound site, proliferate extensively and differentiate along a cartilaginous or an osteogenic lineage in response to local environmental cues. MSCs may be able to directly sense their mechanical environment or alternatively, the mechanical environment could act indirectly to regulate MSC differentiation by inhibiting angiogenesis and diminishing the supply of oxygen and other regulatory factors. Dynamic compression has been shown to regulate chondrogenesis of MSCs. In addition, previous studies have shown that a low oxygen environment promotes in vitro chondrogenesis of MSCs. The hypothesis of this study is that a low oxygen environment is a more potent promoter of chondrogenic differentiation of MSCs embedded in agarose hydrogels compared to dynamic compression. In MSC-seeded constructs supplemented with TGF-β3, GAG and collagen accumulation was higher in low oxygen conditions compared to normoxia. For normoxic and low oxygen culture GAG accumulation within the agarose hydrogel was inhomogeneous, with low levels of GAG measured in the annulus of constructs maintained in normoxic conditions. Dynamic compression did not significantly increase GAG or collagen accumulation in normoxia. However under low oxygen conditions, dynamic compression reduced GAG accumulation compared to free-swelling controls, but remained higher than comparable constructs maintained in normoxic conditions. This study demonstrates that continuous exposure to low oxygen tension is a more potent pro-chondrogenic stimulus than 1 h/day of dynamic compression for porcine MSCs embedded in agarose hydrogels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.