Abstract

Phase change memory (PCM) is a promising DRAM replacement in embedded systems due to its attractive characteristics, such as low-cost, shock-resistivity, nonvolatility, high density, and low leakage power. However, relatively low endurance has limited its practical applications. In this paper, in addition to existing hardware level optimizations, we propose software enabled wear-leveling techniques to further extend PCMs lifetime when it is adopted in embedded systems. Most existing software optimization techniques focus on reducing the total number of writes to PCM, but none of them consider wear leveling, in which the writes are distributed more evenly over the PCM. An integer linear programming formulation and a polynomial-time algorithm, the software wear-leveling algorithm, are proposed in this paper to achieve wear leveling without hardware overhead. According to the experimental results, the proposed techniques can reduce the number of writes on the most-written addresses by more than 80% when compared with a greedy algorithm, and by more than 60% when compared with the existing optimal data allocation algorithm with under 6% memory access overhead.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.