Abstract

Highly responsive methanol sensors working at low temperatures are developed using hierarchical ZnO nanorods decorated by Pt nanoparticles. The sensing materials are fabricated following a 3-step process: electrospinning of ZnO nanofibers, hydrothermal growth of hierarchical ZnO nanorods on the nanofibers and UV-assisted deposition of Pt nanoparticles. The morphology, structure and properties of the materials are examined by field-effect scanning electron microscopy, transmission electron microscope, x-ray diffraction, x-ray photoelectron spectroscopy, UV–Vis absorption spectroscopy, and electrical measurements. The methanol sensing performance is investigated at different working temperatures in the range of 110 °C–260 °C. It is observed that the surface modification of the ZnO hierarchical nanorods by Pt nanoparticles results in a remarkable enhancement of the sensing response toward methanol, which can reach approximately 19 500 times higher than that of the unmodified ZnO nanorods-based sensor. In addition, this modification enables lower working temperatures with an optimum range of 140 °C–200 °C. Based on the achieved results, a methanol sensing mechanism of the Pt/ZnO structure is proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.