Abstract

We developed a simple and novel method to fabricate complementary-like logic inverters based on ambipolar graphene field-effect transistors (FETs). We found that the top gate stacks (with both the metal and oxide layers) can be simply prepared with only one-step deposition process and show high capacitive efficiency. By employing such a top gate as the operating terminal, the operating bias can be lowered within 2 V. In addition, the complementary p- and n-type FET pairs can be also simply fulfilled through potential superposition effect from the drain bias. The inverters can be operated, with up to 4-7 voltage gains, in both the first and third quadrants due to the ambipolarity of graphene FETs. For the first time, a match between the input and output voltages is achieved in graphene logic devices, indicating the potential in direct cascading of multiple devices for future nanoelectronic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.