Abstract
O6-alkylguanine DNA-alkyltransferase (ATase) provides protection against the toxic, mutagenic and carcinogenic effects of alkylating agents, principally by removing the promutagenic lesion O6-alkylguanine from DNA. Differences in ATase activity in human tissue may thus determine mutational susceptibility. As GC-->AT transitions, which can be induced by O6-alkylguanine in DNA, are commonly observed in the K-ras oncogene of alkylating agent induced animal tumours and in human colorectal tumours, we have examined whether differences in ATase activity may affect the risk of K-ras mutations in humans with colorectal tumours. NTase activity in normal tissue from individuals with a K-ras mutation in colorectal tissue and more specifically a GC-->AT transition (but not a transversion mutation) was significantly lower than that in individuals without a mutation (P < 0.01). Thus, individuals with low ATase activity in normal tissue (i.e. below the median) were at increased risk of having a transition (OR 10.1; 95% CI 1.9-99.0), but not a transversion mutation (OR 1.7; 95% CI 0.3-12.2). There were no significant differences in tumour ATase activity in individuals with or without a mutation. These results suggest that ATase can protect colorectal tissue against the mutagenic effects of alkylating agents and furthermore, that alkylating agent exposure plays a role in the aetiology of colorectal tumours containing a GC-->AT transition in the K-ras oncogene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.