Abstract
The work described in this paper is a part of the Department of Energy/Lewis Research Center (DOE/LeRC) “Advanced Conversion Technology” (ACT) project. The program is a multiple contract effort with funding provided by the Department of Energy and technical program management provided by NASA LeRC. The increasingly critical situation concerning the world’s petroleum supply necessitates the investigation of alternate fuels for use in industrial gas turbines. Environmentally acceptable operation with minimally processed petroleum based heavy residual and coal derived synthetic fuels requires advanced combustor technology. The technology described in this paper was developed under the DOE/NASA Low NOx Heavy Fuel Combustor Concept Program (Contract DEN3-145). Novel combustor concepts were designed for dry reduction of thermal NOx, control of NOx from fuels containing high levels of organic nitrogen, and control of smoke from low hydrogen content fuels. These combustor concepts were tested by burning a wide variety of fuels including a middle distillate (ERBS), a petroleum based heavy residual, a coal derived synthetic (SRC-II), and various ratios of blends of these fuels which included nitrogen doping with pyridine. The results of these tests show promise that low NOx emissions and high efficiencies can be obtained over most of the operating range of a typical industrial gas turbine engine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.