Abstract
BackgroundAlthough avian Plasmodium species are widespread and common across the globe, limited data exist on how genetically variable their populations are. Here, the hypothesis that the avian blood parasite Plasmodium relictum exhibits very low genetic diversity in its Western Palearctic transmission area (from Morocco to Sweden in the north and Transcaucasia in the east) was tested.MethodsThe genetic diversity of Plasmodium relictum was investigated by sequencing a portion (block 14) of the fast-evolving merozoite surface protein 1 (MSP1) gene in 75 different P. relictum infections from 36 host species. Furthermore, the full-length MSP1 sequences representing the common block 14 allele was sequenced in order to investigate if additional variation could be found outside block 14.ResultsThe majority (72 of 75) of the sequenced infections shared the same MSP1 allele. This common allele has previously been found to be the dominant allele transmitted in Europe.ConclusionThe results corroborate earlier findings derived from a limited dataset that the globally transmitted malaria parasite P. relictum exhibits very low genetic diversity in its Western Palearctic transmission area. This is likely the result of a recent introduction event or a selective sweep.
Highlights
Avian Plasmodium species are widespread and common across the globe, limited data exist on how genetically variable their populations are
The rationale behind this is that the paper by Hellgren et al [24], where the complete msp1 gene of P. relictum was sequenced, relied on a PCR protocols, that are not nested as the block 14 protocol, using samples with extremely high parasitaemias obtained through infection experiments; such parasitaemia levels are almost never observed in the wild
For the P. relictum parasites transmitted in Europe, this study confirms that there is little genetic variation at msp1 throughout the parasite population
Summary
Avian Plasmodium species are widespread and common across the globe, limited data exist on how genetically variable their populations are. The amount of standing genetic variation in a pathogen population can affect its ability to adapt to changes in its host population or environment. While it previously has been difficult to sequence nuclear genes of these parasites, genome and transcriptome sequences are becoming increasingly available with the development of modern sequencing technologies [13,14,15,16,17,18]. These new data allow for investigations of intra- and interspecific genetic variation of avian malaria parasites at a higher resolution than was previously possible
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.