Abstract

The human population is widely exposed to polyethylene glycol (PEG) and its chemical derivatives, which are widely used as vehicles or co-solvents in many pharmaceutical and cosmetic preparations. However, PEG polymers of low molecular weight differ significantly from polymers of higher molecular weight in their physico-chemical properties, biological effects on cell permeability and their absorption and excretion, as well as their higher toxicity and possibly genotoxicity. In the present study we have analysed the induction of chromosome aberrations by the low molecular weight PEG polymers tetraethylene glycol (TEG), PEG 200 and PEG 400 in a Chinese hamster epithelial liver (CHEL) cell line, which retains sufficient metabolic capability to activate different promutagens and procarcinogens. The results indicate that in CHEL cells only TEG and PEG 200 are clastogenic. Parallel experiments performed in CHO cells in the presence and absence of rat liver S9 mix showed significant increases in chromosomal aberrations only in cultures treated with TEG in the presence of rat liver S9, indicating that low molecular weight polymers need to be activated to exert their genotoxic activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.