Abstract

The success of digital replantation is highly dependent on the patency of the repaired vessels after microvascular anastomosis. Antithrombotic agents are frequently used for preventing vascular occlusion. Low molecular weight heparin (LMWH) has been reported to be as effective as unfractionated heparin (UFH) in peripheral vascular surgery, but with fewer adverse effects. Its benefit in microvascular surgery such as digital replantation is unclear. To assess whether subcutaneous LMWH treatment improves the salvage rate of the digits in patients with digital replantation after traumatic amputation. The Cochrane Peripheral Vascular Diseases Group Trials Search Co-ordinator (TSC) searched the Specialised Register (October 2012), CENTRAL (2012, Issue 10) and trials databases. In addition, the authors searched PubMed, CNKI (China National Knowledge Infrastructure) and CEPS (Chinese Electronic Periodical Services), and sought additional trials from reference lists of relevant publications. We selected randomised or quasi-randomised controlled trials of LMWH in patients who received digital replantation. Two review authors independently extracted data and assessed the risk of bias of the included trials. Disagreements were resolved by discussion. Two randomised trials involving 114 patients with at least 122 replanted digits met the inclusion criteria and were included. Both trials compared the efficacy and safety of LMWH with UFH. We found no trials comparing LMWH with placebo or other anticoagulants. The data from the two included studies were insufficient for meta-analysis. The overall success rate of replantation did not differ between the LMWH and UFH groups, 92.3% versus 89.2% in one trial (risk ratio (RR) 1.03; 95% confidence interval (CI) 0.87 to 1.22) and 94.3% versus 94.15% in the other trial (RR 1.00; 95% CI 0.89 to 1.13). The incidence of both postoperative arterial and venous insufficiency were reported in one trial and did not significantly differ between the LMWH and UFH groups (RR 1.08; 95% CI 0.16 to 7.10 and RR 0.81; 95% CI 0.20 to 3.27, respectively). Direct and indirect causes of microvascular insufficiency were not reported in the trials. Different methods were used to monitor the adverse effects related to anticoagulation in the two trials. Bleeding tendency was monitored for the LMWH and UFH groups in one trial and was reported by the incidence of wound haemorrhage (11.5% versus 17.9%; RR 0.65; 95% CI 0.17 to 2.44), ecchymoses (3.8% versus 10.7%; RR 0.36; 95% CI 0.04 to 3.24), haematuria (3.8% versus 7.1%; RR 0.54; 95% CI 0.05 to 5.59), nasal bleeding (0% versus 7.1%; RR 0.21; 95% CI 0.01 to 4.28), gingival bleeding (0% versus 10.7%; RR 0.15, 95% CI 0.01 to 2.83) and faecal occult blood (0% versus 3.6%; RR 0.36; 95% CI 0.02 to 8.42). The bleeding tendency was increased in the UFH group but this was not statistically significant. This trial also monitored coagulability changes using parameters such as antithrombin activity, factor Xa activity, bleeding time, clotting time and activated partial thromboplastin time (aPTT). No comparison was made between the LMWH and UFH groups but all data consistently showed that coagulability was reduced more in the UFH group than in the LMWH group. The other trial reported a postoperative decrease in platelet count in the UFH group (preoperative 278.4 ± 18.7 x 10(9)/L, postoperative 194.3 ± 26.5 x 10(9)/L; P < 0.05) but not in the LMWH group (preoperative 260.8 ± 32.5 x 10(9)/L, postoperative 252.4 ± 29.1 x 10(9)/L; P > 0.05). Current limited evidence based on two small-scaled low-to-medium quality randomised trials found no differences in the success rate of replantation between LMWH and UFH, but a lower risk of postoperative bleeding and hypocoagulability after the use of LMWH. Further well-designed and adequately powered clinical trials are warranted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call