Abstract

Polyethylenimine (PEI) is one of the most versatile non-viral vectors used in gene therapy, especially for delivering plasmid DNA to human cells. However, a good understanding of PEI binding to DNA, the fundamental basis for the functioning of PEI as a vector, has been missing in the literature. In this study, PEI (branched, 600 Da) binding to DNA was examined by isothermal titration calorimetry (ITC), quartz crystal microbalance (QCM) and a complementary set of analysis tools. We demonstrated that a separation between the binding heat and the condensation heat is needed and that the excluded site model should be used for PEI binding stage in the ITC analysis. The equilibrium constant for PEI binding to DNA was determined to be 2.5×105 M-1 from the ITC analysis, and as 2.3×105 M-1 from the QCM analysis. Additionally, we suggested that the 600 Da branched PEI binds to the major groove of DNA and the rearrangement of PEI on DNA may be difficult to occur because of the small dissociation rate. The binding analysis presented here can be employed to improve our understanding of the functioning of PEI and PEI-like non-viral vectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.