Abstract

The use of low molecular weight, oligomeric and polymeric heterocyclics as electron transport/hole-blocking layers in organic light-emitting diodes is reviewed. The most widely applied materials are π-electron deficient heterocyclics carrying imine nitrogen atoms in the aromatic ring, such as 1,3,4-oxadiazoles, 1,2,4-triazoles, 1,3,5-triazines, and 1,4-quinoxalines. Properties such as redox potentials, ionization potential, electron affinity and charge transport mobility of the materials, if known, are taken into consideration to support the electron injection/transport and hole-blocking effectiveness. It can be generalized that heterocyclic moieties with high reduction potential reduce the interface barriers caused by the band offset between organic material and cathode and are most suitable materials for electron injection in organic electroluminescent devices. These materials are generally characterized by high ionization potential values that contribute towards the hole-blocking property. A general comparison of devices and materials is only possible with limitations owing to the variations in device structure, fabrication, electrode materials, emitter materials, etc. © 1998 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.