Abstract

Low Young's modulus titanium alloys, such as Ti-30Nb-5Ta-3Zr (TNTZ) of this study, were promising biocompatible implant materials. In this work, TNTZ samples with relative density of 96.8%–99.2% were additively manufactured by powder-bed based Selective Laser Melting (SLM) through tuning processing parameters, i.e. varying the point distance between 50 and 75 μm, laser exposure time between 135 and 200 μs, and a fixed laser power of 200 W. The microstructure, elastic properties, fatigue properties and machining accuracy of the fabricated samples have been investigated. Lattice structure TNTZ samples with porosity of 77.23% were also fabricated to further reduce the Young's modulus of the TNTZ. According to the Relative Growth Rate (RGR) value, the as-printed TNTZ samples exhibited no cell cytotoxicity, where they showed even better biocompatibility than the comparative, as-printed Ti-6Al-4V samples. The as-printed TNTZ developed by the study demonstrates good biocompatibility, low stress shielding tendency and high mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.