Abstract

Independent light propagation through one or multiple modes is commonly considered as a basic demand for mode manipulation in few-mode fiber (FMF)- or multimode fiber (MMF)-based optical systems such as transmission links, optical fiber lasers, or distributed optical fiber sensors. However, the insertion of doped-fiber amplifiers always kills the entire effort by inducing significant modal crosstalk. In this paper, we propose the design of doped-fiber amplifiers in FMF-based systems adopting identical multiple-ring-core (MRC) index profiles for both passive and doped fibers to achieve low modal crosstalk. We develop the direct-glass-transition (DGT) modified chemical vapor deposition (MCVD) processing for precise fabrication of few-mode erbium-doped fibers (FM-EDFs) with MRC profiles of both refractive index and erbium-ion doping distribution. Then, a few-mode erbium-doped-fiber amplifier (FM-EDFA) with a maximum gain of 26.08 dB and differential modal gain (DMG) of 2.3 dB is realized based on fabricated FM-EDF matched with a transmission FMF supporting four linearly polarized (LP) modes. With the insertion of the FM-EDFA, 60 + 60 km simultaneous LP01/LP11/LP21/LP02 transmission without inter-modal multiple-input multiple-output digital signal processing (MIMO-DSP) is successfully demonstrated. The proposed design of low-modal-crosstalk doped-fiber amplifiers provides, to our knowledge, new insights into mode manipulation methods in various applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.