Abstract
The Mongolian gerbil has become a model organism of increasing importance for the understanding of aging, epilepsy, the process of domestication or sociobiological questions. We report the development and characterization of the first nine polymorphic dinucleotide repeat loci in this species. Average observed heterozygosity and allele number of laboratory animals measured 0.136 (SE = +/-0.065) and 1.78 (SE = +/-0.278) compared to 0.761 (SE = +/-0.025) and 9.2 (SE = +/-0.57) found for a reference group of wild gerbils. The extreme low genetic variation observed in laboratory animals is caused by several severe population size bottlenecks due to the initial founder event and the later establishment of subpopulations. Reduced levels of allelic polymorphism in experimental animals hamper genetic mapping or parental studies. Therefore experiments relying on kinship analyses have to be carried out on wild animals. Estimates of genetic identity and parental exclusion were calculated as Pid = 2.8 x 10(-12) and Pex > 0.999 in wild gerbils. Laboratory gerbil strains show the expected high degree of genetic similarity. However, significant allele frequency differences (P < .001) between American and European gerbils at some microsatellite loci may still allow discrimination between breeding lines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.