Abstract

AbstractThe low metallicity interstellar medium of dwarf galaxies gives a different picture in the far infrared(FIR)/submillimetre(submm)wavelengths than the more metal-rich galaxies. Excess emission is often found in the submm beginning at or beyond 500 μm. Even without taking this excess emission into account as a possible dust component, higher dust-to-gas mass ratios (DGR) are often observed compared to that expected from their metallicity for moderately metal-poor galaxies. The Spectral Energy Distributions (SEDs) of the lowest metallicity galaxies, however, give very low dust masses and excessively low values of DGR, inconsistent with the amount of metals expected to be captured into dust if we presume the usual linear relationship holding for all metallicities, including the more metal-rich galaxies. This transition seems to appear near metalllicities of 12 + log(O/H) 8.0 - 8.2. These results rely on accurately quantifying the total molecular gas reservoir, which is uncertain in low metallicity galaxies due to the difficulty in detecting CO(1-0) emission. Dwarf galaxies show an exceptionally high [CII] 158 μm/CO (1-0) ratio which may be indicative of a significant reservoir of ‘CO-free’ molecular gas residing in the photodissociated envelope, and not traced by the small CO cores.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call