Abstract

Neutron-star radii provide useful information on the equation of state of neutron rich matter. Particularly interesting is the density dependence of the equation of state (EOS). For example, the softening of the EOS at high density, where the pressure rises slower than anticipated, could signal a transition to an exotic phase. However, extracting the density dependence of the EOS requires measuring the radii of neutron stars for a broad range of masses. A ``normal'' 1.4 solar mass neutron star has a central density of a few times nuclear-matter saturation density. In contrast, low mass (of the order of 0.5 solar masses) neutron stars have central densities near nuclear-matter saturation density so its radius provides information on the EOS at low density. Unfortunately, low-mass stars are rare because they may be hard to form. Instead, a precision measurement of nuclear radii on atomic nuclei may contain similar information. Indeed, we find a strong correlation between the neutron radius of 208Pb and the radius of a 0.5 solar-mass neutron star. Thus, the radius of such a neutron star can be inferred from a measurement of the the neutron radius of 208Pb. Comparing this value to the measured radius of a 1.4 solar-mass neutron star should provide the strongest constraint to date on the density dependence of the equation of state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.