Abstract

ObjectiveThis study aimed to examine the effects of PGE2 on RANKL expression in response to vibration and vibration in combination with compressive stress and characterise this transduction pathway in periodontal ligament (PDL) cells. MethodsCultured human PDL cells obtained from extracted premolar teeth (from six individuals) were subjected to three cycles of vibration (0.3 g, 30 Hz for 20 min every 24 h; V), compressive stress (1.5 g/cm2, 48 h; C) or vibration in combination with compressive stress (VC). To investigate whether the expression of RANKL and PGE2 was COX-dependent, PDL cells were treated with indomethacin prior to the onset of mechanical stimulation. RANKL and OPG expressions were examined by quantitative real-time polymerase chain reaction (qPCR). Quantification of PGE2, soluble RANKL (sRANKL) and OPG productions were measured using enzyme-linked immunosorbent assay (ELISAs). ResultsAll mechanical stresses (V, C and VC) significantly increased PGE2 and RANKL. OPG was not affected by vibration, but was downregulated in compressed cells (C and VC). Indomethacin abolished induction of RANKL and downregulated OPG in response to all mechanical stresses. ConclusionThese results suggest that vibration, compressive stress and vibration in combination with compressive stress induce RANKL expression in human PDL cells by activating the cyclooxygenase pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.