Abstract

We are interested in free surface flows where density variations coming e.g. from temperature or salinity differences play a significant role in the hydrody-namic regime. In water, acoustic waves travel much faster than gravity and internal waves, hence the study of models arising from compressible fluid mechanics often requires a decoupling between these waves. Starting from the compressible Navier-Stokes system, we derive the so-called Navier-Stokes-Fourier system in an incompressible regime using the low-Mach scaling, hence filtering the acoustic waves, neglecting the density dependency on the fluid pressure but keeping its variations in terms of temperature and salinity. A slightly modified low-Mach asymptotics is proposed to obtain a model with thermo-mechanical compatibility. The case when the density depends only on the temperature is studied first. Then the variations of the fluid density with respect to temperature and salinity are considered, and it seems to be the first time that salinity dependency is considered in this low Mach limit. We give a layer-averaged formulation of the obtained models in an hydrostatic context, allowing to derive numerical schemes endowed with strong stability properties that are presented in a companion paper. Several stability properties of the layer-averaged Navier-Stokes-Fourier system are proved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.